

Grado en Ingeniería Mecánica Grado en Ingeniería Mecánica + DYCRE

CALIFICACIÓN

Laureate International Universities

Diseño de Máquinas

Tercer Curso. Grupo M31, M32

Examen Final 2012/2013. 22-Marzo-2013

APELLIDOS:		NOMBRE:	
			 _
<u>O</u>	DBSERVACIONES:		

PROBLEMA Nº 1.-(10 Puntos)

La máquina de la figura, **que está en régimen**, consta de 3 ejes "A", "B" y "C" el último de los cuáles mueve una cremallera de dientes rectos. La cremallera se mueve con velocidad "V" y vence una fuerza "F" según se indica en la gráfica adjunta para 1 ciclo de trabajo completo, donde la carrera de retorno se obtiene mediante un mecanismo Inversor sin especificar y del que no hay que preocuparse. La masa de la cremallera es de 10 Kg y el Momento de Inercia del Motor $J_m = 1 \text{ kg m}^2$, con el resto de Masas y Momentos de Inercia despreciables. Tómese rendimiento $\eta = 1$.

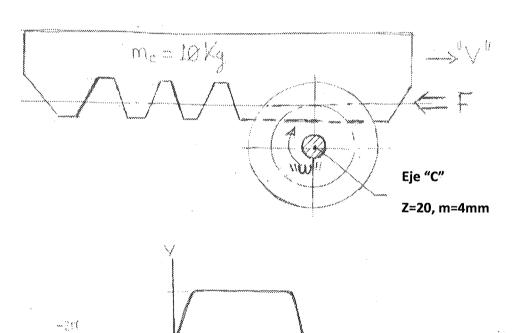
Se pide:

- A) Reducir la instalación al eje del Motor. (3 Puntos)
- B) Calcular el valor del Par Motor "M_m", dado que la máquina está en régimen. (2 Puntos)
- C) Calcular el diámetro del eje "A" supuesto que es de acero con σ_F = 400 MPa, σ_R = 600 MPa. Utilizar el criterio de Goodman con C_S =0,8; C_T = 0,85; K_e =1 y Coeficiente de Seguridad N = 2.(4 Puntos)
- D) Si en este eje apareciera alguna grieta como consecuencia del proceso de fatiga:
 - d.1) Por qué plano se iniciaría. (0,5 Puntos)
 - d.2) A lo largo de qué plano se propagaría, supuesto que esto ocurriese. (0,5 Puntos)

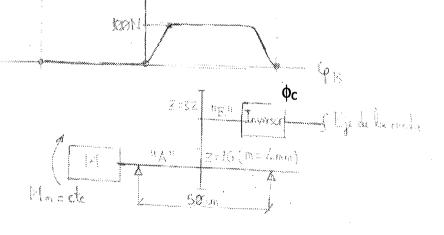
Se supone que el eje es isótropo y homogéneo. Indicar la orientación en relación al eje axial "X".

Grado en Ingeniería Mecánica Grado en Ingeniería Mecánica + DYCRE

CALIFICACIÓN


Diseño de Máquinas

Tercer Curso. Grupo M31, M32


Examen Final 2012/2013. 22-Marzo-2013

APELLIDOS: NOMBRE:

OBSERVACIONES:

фс

Grado en Ingeniería Mecánica Grado en Ingeniería Mecánica + DYCRE

CALIFICACIÓN

Laureate International Universities

Diseño de Máquinas

Tercer Curso. Grupo M31, M32

Examen Final 2012/2013. 22-Marzo-2013

APELLIDOS:	NOMBRE:
OBSERVAC	CIONES:

NOTAS:

1) Se recuerda que la velocidad "V" de una cremallera se calcula como:

"
$$V = \omega R_p$$
"

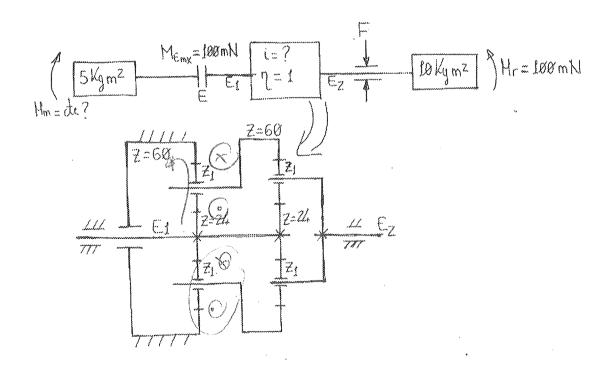
- 2) El Mecanismo Inversor sólo cambia el sentido de " $\omega_{\mathbb{C}}$ " pero no altera el valor absoluto de la relación de transmisión y además, "B" siempre gira en el mismo sentido.
- 3) Recuerde el alumno que al final lo que **interesa** son los **máximos** y los **mínimos**, no sacar una ecuación para todos los valores de ϕ .

Grado en Ingeniería Mecánica Grado en Ingeniería Mecánica + DYCRE

CALIFICACIÓN

Diseño de Máquinas

Tercer Curso. Grupo M31, M32


Examen Final 2012/2013. 22-Marzo-2013

APELLIDOS;	NOMBRE:

OBSERVACIONES:

PROBLEMA Nº 2.- (10 Puntos)

En la instalación de la figura:

Se pide:

A) Reducir toda la instalación al eje del Motor y calcular el Par Motor en condiciones de régimen. Igual hay que aplicar Willis más de 1 vez. (2,5 Puntos)

Grado en Ingeniería Mecánica Grado en Ingeniería Mecánica + DYCRE

CALIFICACIÓN

Diseño de Máquinas

Tercer Curso. Grupo M31, M32

Examen Final 2012/2013. 22-Marzo-2013

	APELLIDOS:	NOMBRE:
Patitude		
	OBSERVACIONES:	

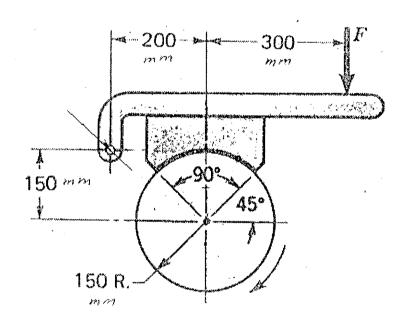
- B) Supuesto que al aplicar el Freno se desconecta el Motor pero no la carga, determinar a partir de que valor del Par de Frenado comienza a patinar el embrague. (2,5 Puntos)
- C) Para un valor del Par de Frenado aplicado de 1,2 veces el calculado en B): Tiempo que tardará cada parte de la instalaciónen detenerse.(2 Puntos)

Supuesto que en "F" colocamos un Freno de Zapata Larga Exterior según muestra la Figura, donde el ancho b de la zapata vale 40 mm., y el coeficiente de rozamiento puede estimarse de valor 0,3. Para un valor del Par de Frenado calculado en B). Se pide:

- D) Valor de la Presión Máxima P_{max} entre tambor y freno, así como indicar el Punto donde aparece dicha P_{max}. (1,5 Puntos)
- E) Valor de la Fuerza F para obtener dicho Par de Frenado. En este freno en concreto y para el sentido de giro indicado, las fuerzas de rozamiento ayudan a frenar. (1,5 Puntos)

Grado en Ingeniería Mecánica Grado en Ingeniería Mecánica + DYCRE

CALIFICACIÓN


Diseño de Máquinas

Tercer Curso. Grupo M31, M32

Examen Final 2012/2013. 22-Marzo-2013

APELLIDOS: NOMBRE:

OBSERVACIONES:

FORMULARIO

CALIFICACIÓN

Grado en Ingeniería Mecánica Grado en Ingeniería Mecánica + DYCRE

Diseño de Máquinas

Tercer Curso. Grupo M31, M32

Examen Final 2012/2013. 22-Marzo-2013

APELLIDOS: NOMBRE:

OBSERVACIONES:

$$\frac{n_1}{n_6} = \left(-\frac{z_2}{z_1}\right) \left(-\frac{z_3}{z_4}\right) \left(-\frac{z_6}{z_5}\right) \quad \text{o} \quad \frac{n_6}{n_1} = \left(-\frac{z_5}{z_6}\right) \left(-\frac{z_1}{z_3}\right) \left(-\frac{z_1}{z_2}\right)$$

$$z_2$$

$$z_4$$

$$z_4$$

$$z_5$$

$$z_6$$

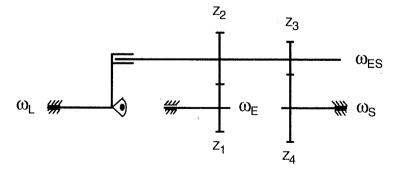
$$z_6$$

$$z_6$$

$$z_6$$

$$z_7$$

$$z_8$$


$$z_8$$

$$z_8$$

$$z_9$$

$$\frac{\omega_{E} - \omega_{L}}{\omega_{ES}} = -\frac{z_{2}}{z_{1}} \qquad \frac{\omega_{S} - \omega_{L}}{\omega_{ES}} = -\frac{z_{3}}{z_{4}}$$

$$\frac{\omega_{S} - \omega_{L}}{\omega_{E} - \omega_{L}} = \pm \frac{z_{3}}{z_{4}} \frac{z_{1}}{z_{2}}$$

ENGRANAJES:

Grado en Ingeniería Mecánica Grado en Ingeniería Mecánica + DYCRE

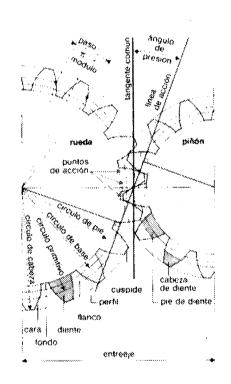
CALIFICACIÓN

Diseño de Máquinas

Tercer Curso. Grupo M31, M32

Examen Final 2012/2013. 22-Marzo-2013

APELLIDOS: NOMBRE:


OBSERVACIONES:

Rp = Radio Primitivo; Rb = Radio Base

Rp = m Z/2; Rb = Rpcos α ; $\alpha = 20^{\circ}$ (Sistema ISO)

Fuerza "F" en la dirección de la Línea de Engrane (En la Figura "línea de acción")

Mt = Par Transmitido por la rueda; F = Mt / Rb

FATIGA:

SODERBERG:
$$\sigma_{eq} = \sigma_m + \frac{\sigma_F}{\sigma_{fat}} \frac{K_e}{C_L C_S C_T} \sigma_{alt}$$

GOODMAN:
$$\sigma_{eq} = \sigma_m + \frac{\sigma_R}{\sigma_{fat}} \frac{K_e}{C_L C_S C_T} \sigma_{alt}$$

SODERBERG:
$$\tau_{eq} = \tau_m + \frac{\tau_F}{\sigma_{fat}} \frac{K_e}{C_L C_S C_T} \tau_{alt}$$

GOODMAN:
$$\tau_{eq} = \tau_m + \frac{\tau_R}{\sigma_{fal}} \frac{K_e}{C_L C_S C_T} \tau_{alt}$$

Grado en Ingeniería Mecánica Grado en Ingeniería Mecánica + DYCRE

CALIFICACIÓN

Diseño de Máquinas

Tercer Curso. Grupo M31, M32 Examen Final 2012/2013. 22-Marzo-2013

APELLIDOS:	NOMBRE:
OBSERVA	CIONES:

FRENO DE ZAPATA LARGA EXTERIOR:

Grado en Ingeniería Medánica
Grado en Ingeniería Mecánica / DYCRE

CALIFICACIÓN

Diseño de Máquinas

Tercer Curso. Grupo M31, M32

Examen Final 2012/2013. 22-Marzo-2013

APELLIDOS:

NONBRE:

OBSERVACIONES:

Laureate International Universities

Escuela Politécnica

Grado en Ingeniería Mecánica Grado en Ingeniería Mecánica + DYCRE

CALIFICACIÓN

Diseño de Máquinas

Tercer Curso. Grupo M31, M32

Examen Final 2012/2013. 22-Marzo-2013

APELLIDOS: NOMBRE:

OBSERVACIONES:

$$P_{n} = \frac{(P_{n})_{m\dot{\alpha}x}}{(sen\varphi)_{m\dot{\alpha}x}} \cdot sen\varphi$$

$$M_{fr} = \frac{\mu \cdot b \cdot r^{2} \cdot (P_{n})_{m\dot{\alpha}x}}{(sen\varphi)_{m\dot{\alpha}x}} \cdot [(\cos\varphi_{1} - \cos\varphi_{2})]$$

$$M_{n} = \frac{b \cdot r \cdot r_{1} \cdot (P_{n})_{m\dot{\alpha}x}}{4 \cdot (sen\varphi)_{m\dot{\alpha}x}} \cdot [2 \cdot (\varphi_{2} - \varphi_{1}) + sen2\varphi_{1} - sen2\varphi_{2}]$$

$$M_{froz} = \frac{\mu \cdot b \cdot r \cdot (P_{n})_{m\dot{\alpha}x}}{4 \cdot (sen\varphi)_{m\dot{\alpha}x}} \cdot [r_{1} \cdot (\cos2\varphi_{2} - \cos2\varphi_{1}) - 4 \cdot r \cdot (\cos\varphi_{2} - \cos\varphi_{1})]$$

